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In a previous paper (4, t h e  possibi l i ty  of composing mono- 
propel lants  from tetranitromethane and fue ls  w a s  d iscussed .  
T h e  object ive of t h i s  invest igat ion i s  t o  provide more data  
on t h e  explos ive  safety of such  monopropellants. 

C A R D  C A P  TEST 

T h e  “card gap t e s t ”  ( 1 )  was used  to  a s s e s s  explos ive  
safe ty  in terms of “shock  sensi t ivi ty .”  

In e s s e n c e ,  t h e  t e s t  se tup  c o n s i s t s ,  in ver t ical  upward 
sequence ,  of a b las t ing  c a p  (a 50-gram tetryl  pellet), sepa-  
rated by a s tack  of p las t ic  d i s k s  (“cards”)  from a sample  
of 35 t o  40 ml. contained in a s t e e l  cyl inder  1 inch in 
diameter. On top of the  sample  cylinder is placed a s t e e l  

T h e  number of c a r d s  t h a t  a t tenuates  t h e  shock of t h e  
detonating te t ryl  pel le t  jus t  enough t o  allow t h e  sample  to  
detonate  with 50% probability is t h e  measure of sensi t ivi ty .  
Detonation of the sample  is indicated by puncture or frac- 
ture  of the  target  plate. 

B e c a u s e  t h e  method involves  some uncontrollable vari- 
ab les ,  a s t a t i s t i c a l  procedure must b e  followed, firing about 
20 shots .  R e s u l t s  a r e  given a s  t h e  number of c a r d s  a t  50% 
probability of detonation of t h e  sample. 

Maintaining t h e  sample temperature within -i. 1 C., a 
precis ion of t 1 card can be  obtained in t h e  range 0 t o  5 0  
cards .  

t a rge t”  plate  3/, inch in  th ickness .  “ 

‘Present address, High Energy Propellants Division, Olin 

’Present address, Callery Chemical Co., Callery, Pa.  
Mathieson Chemical Corp., New Haven, Conn 

A s  t o  t h e  meaning of t h e  resu l t s ,  t h e  t e s t  s imula tes  only 
one of t h e  poss ib le  c a u s e s  of detonation, namely a hydrc- 
dynamic shock. In particular, resu l t s  a r e  not indicat ive of 
t h e  tendency toward thermal explosions.  

CHEMICALS USED 

T h e  following chemica ls  were used  in composing t h e  
t e s t e d  mixtures. 

Tetranitromethane, 99.5% pure, Polynitro Chemical Co. 
Nitromethane, 99.5% pure, Commercial Solvents Corp. 
Monomethyl glycol, source unknown, distilled, met refractive 

Benzene, 99 to 100% pure, General Chemical Division, Allied 
index specification 

Chemical & Dye Corp. 

TEST RESULTS 
T h e  experimental data a r e  l i s ted  in  T a b l e  I. Sample 

temperature  w a s  20’ t l o C .  throughout. 
T h e  s a m e  da ta  a r e  plotted a s  F igure  1. A theoret ical ly  

more s ignif icant  plot is obtained by expressing t h e  mixture 
ra t ios  in terms of fuel  equivalence fraction, q. T h i s  i s  
simply obtained by calculat ing an average molecular formula 
of t h e  mixture containing C carbon atoms, H hydrogen 
atoms, and X oxygen atoms. Then  

4C + H 
‘= 4C + H + 2X 

T h u s ,  q = 0.5 s ignif ies  equivalent, q < 0.5 fuel  lean,  

In F igure  3 i s  given a plot of enthalpy of explosion vs. 
q > 0.5 fuel  rich. 

Figure 1. Card gap value V S .  weight composition of mixtures 
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Figure 2. Card gap value vs. fuel equivalence fraction 

fuel  equiva lence  fraction. In ca lcu la t ing  t h i s  enthalpy,  
products  of explosion were  assumed to b e  CO,, H,O, and 0, a t  
q < 0.5; CO, and I1,O at  q = 0.5; and CO,, CO, H,O, H, ac-  
cording t o  t h e  water  g a s  equilibrium at  an es t imated  f lame 
temperature a t  q > 0.5. 

When F i g u r e s  2 and 3 were cross-plot ted,  F igure  4 w a s  
obtained,  showing t h e  card number vs. enthalpy of explo- 
sion. 

DISCUSSION O F  RESULTS 
Data  confirm ear l ier  indicat ion (3) that  tetranitromethane- 

nitromethane mixtures a r e  safer  than s toichiometr ical ly  

Table I. Experimental Data 

Propellant 

Tetranitro- 
methane, 

Wt. 70 

100 
90 
80 
70 
60 
44.5 
18.8 
0 

90 
77 
67 
57 
30 

Fuel Equiv. 
Fraction, 

Fuel 9 

Nitro- 0.20 
methane 0 .27  

0.33 
0.39 
0.44 
0.50 
0.59 
0.64 

Methyl 0.36 
glycol 0.50 

0.58 
0.63 
0.76 

Enthalpy 

sion, 
Cal./Gram 

of Explo- 

455 
660 
8 70 

1080 
1285 
1600 
1195 
960 

960 
1625 
1145 
820 

7 

50% Probability 
of Detonation 
at Number of 

Cards 

35 
50 
70 
80 
69 
59 
41 
20 

150 
270 
150 
50 
0 

95 Benzene 0.33 
0.50 86 

75 0.64 1070 

} In e x c e s s  of 
300 cards 

50 0.83 600 0 
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Figure 3. Enthalpy of explosion vs. fuel 
equivalence fraction 
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Figure 4. Card gap value vs .  enthalpy of explosion 

equivalent  mixtures of te t rani t romethane and hydrocarbons, 
Tetranitromethane-benzene mixtures a r e  extremely s e n s i -  
t ive ,  a s  one would expect  from other t e s t s  using a graded 
s c a l e  of b las t ing  c a p s  (2,  4). 

T h e  te t ran i t romethanemethyl  glycol  mixture ranges in 
sens i t iv i ty  between t h e  nitromethane mixtures and benzene  
mixtures. On t h e  fuel-rich branch, t h e  sens i t iv i ty  of t h e  
methyl glycol mixture exceeds  t h e  sens i t iv i ty  of pure n i t r e  
methane by a factor  of 2.5. 

T h i s  means that  composing a monopropellant of higher  
densi ty  (4) than and approximately equal  performance t o  
nitromethane by mixing te t rani t romethane and methyl glycol 
would lead t o  increased sensi t ivi ty .  
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Another remarkable  observat ion on Figure  2 is t h e  shif t  
of t h e  maximum of sens i t iv i ty  t o  t h e  oxygen-rich s i d e  with 
t h e  tetranitromethane-nitromethane mixtures. If t h e  card 
number i s  plotted as a function of enthalpy of explosion in 
Figure 4, it  i s  s e e n  that  peak sensi t ivi ty  appears  a t  peak 
enthalpy (1600 cal .  per gram) except  with t h e  oxygen-rich 
branch of tetranitromethane-nitromethane, where a somewhat 
higher sensi t ivi ty  i s  reached at  1100 cal .  per gram. Note 
that  t h e  sens i t iv i ty  i n c r e a s e  a t  t h e  enthalpy of nitromethane 
(960 cal .  per gram) is more than fourfold. 

In general ,  t h e  chemica l  const i tut ion h a s  a great  in- 
f luence on shock sensi t ivi ty  in accord with experience a t  

other p laces .  T e s t s  on more t y p e s  of mixtures appear  t o  b e  
worth while. 
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Volume Changes in Petroleum Waxes as Determined 

from Refractive Index Measurements 
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S o l i d  t ransi t ions t a k e  p l a c e  i n  commercial paraffin w a x e s  
a s  well a s  i n  pure n-paraffin hydrocarbons, and t h e s e  
changes  can  b e  de tec ted  i n  a variety of ways  (13, 14, 20, 
21, 25, 26). T h e  changes  i n  t ranslucency,  mottling, and 
formation of bubbles  that  occur  in  m a s s e s  of paraffin wax 
during s torage  a r e  ev idences  that  b a s i c  changes  in s t ructure  
a r e  taking place.  

T h e  volume changes  accompanying such  t rans i t ions  a r e  
of considerable  importance i n  commercial appl ica t ions  for 
waxes. For  example, in t h e  molding of candles ,  contract ion 
must b e  carefully controlled, if t h e  c a n d l e s  a r e  to  r e l e a s e  
from t h e  mold properly, and  yet  not contain s t r e s s e s  which 
will make them unduly f rag i le  i n  handling. T h e  cracking of 
wax f i lms on paper food c u p s  and milk conta iners  a s  a re- 
sul t  of thermal s h o c k s  which accompany t h e  process ing  of 
t h e  containers  is a further example of t h e  pract ical  im- 
portance of volume changes  i n  so l id  waxes. 

Therefore, i n  t h e  formulation of waxes  for spec i f ic  end 
u s e s  a convenient method is needed for measuring volume 
changes  with respect  t o  temperature. 

T h e  direct  method is t o  measure changes  i n  volume as 
they occur  with var ia t ions i n  temperature, using appara tus  
such  a s  t h e  dilatometer (24). T h e  chief diff icul t ies  in  using 
the  dilatometer lie i n  t h e  need for completely removing and 
excluding g a s e s  from t h e  sol id  sample and  in  t h e  lengthy 
per iods of t ime needed to  bring t h e  sys tem t o  equilibrium. 
Certain other methods, such  as those  involving measurement 
of dielectr ic  constant ,  or x-ray diffraction, permit t h e  calcu- 
la t ion of wax volume, but a r e  too complex for everyday use.  

Descr ibed here  is a method by which volume changes  i n  
petroleum waxes  may b e  es t imated  over  a range of temper- 
a tures  with suff ic ient  ease and accuracy t o  warrant i t s  u s e  
in  t h e  development of wax products. T h e  method u s e s  a 
densi ty  determination i n  t h e  l iquid s t a t e  together with 
measurements  of refractive index in  both liquid and so l id  
s t a t e s ,  to  provide the  da ta  needed to  ca lcu la te  dens i ty  or  
spec i f ic  volume at  other  temperatures. 

METHOD OF C A L C U L A T I O N  

T h e  fac t  that  a relat ionship e x i s t s  between densi ty  and 
refractive index  of a material permits calculat ion of densi ty  
and of spec i f ic  volume a t  any temperature from e a s i l y  ob- 
ta ined measurements of t h e  refract ive index a t  that  temper- 
a ture  and  of t h e  densi ty  and refract ive index at  o n e  temper- 
a ture  i n  the  liquid s ta te .  Johnson (13) h a s  succespfu l ly  
used  t h i s  re la t ionship to  measure t ransi t ion temperature 
ranges in  paraffin waxes,  and to  determine d e n s i t i e s  of 
liquid and sol id  dotriacontane. 

T h e  expression of t h i s  re la t ionship showing c loses t  
agreement with observat ion over  t h e  range of temperatures  
considered here  is given by t h e  formula of Lorentz  and 
Lorenz: 

where r is t h e  spec i f ic  refractivity in  terms of n, t h e  re- 
f ract ive index, and d, t h e  dens i ty  a t  the  s a m e  temperature. 

T h e  spec i f ic  refractivity h a s  been shown t o  b e  considered 
substant ia l ly  independent of t h e  s t a t e  of aggregation and 
relatively invariant t o  change i n  temperature (10, 11, 16). 
Thus,  t h e  densi ty  a t  any temperature may b e  ca lcu la ted  
from t h e  refract ive index a t  that  temperature and t h e  spe- 
cific refractivity. T h e  spec i f ic  refractivity is most eas i ly  
calculated from refractive index and densi ty  a t  a tempera- 
ture  where t h e  wax is liquid. 

By equat ing t h e  express ions  for spec i f ic  refractivity a t  
t h e  two temperatures, t h e  dens i ty  a t  t h e  second temperature 
can  b e  calculated.  It i s  given by 

n: + 2 n,’ - 
d, = d,  7 - 

(n, - 1) (n,’ + i )  
where d, and d ,  a r e  the  d e n s i t i e s  a t  the  two temperatures, 
and nI and n, a r e  t h e  refractive ind ices  a t  t h e  s a m e  two 
temperatures. 

I n  pract ical  appl icat ion i t  i s  usual ly  more convenient to  
speak  in  terms of volume rather than of densi ty  changes  
taking p lace  in  a wax. Accordingly in  t h e  cases which 
follow, spec i f ic  volume, t h e  reciprocal of t h e  densi ty ,  h a s  
been shown i n  addi t ion to  or ins tead  of density. 

A s  so l id  petroleum wax is known t o  b e  birefringent, a 
mean value for refract ive index must be  ca lcu la ted  for u s e  
in  Equation 2. Although s t r ic t  adherence to  t h e  theory re- 
quires  t h e  u s e  of a geometric mean, i n  prac t ice  t h e  ap- 
proximation given by P o p e  (18) 

(3) 

is suff ic ient ly  accura te  for most work. Here no and ne 
represent t h e  refractive ind ices  as given by t h e  ordinary 
and extraordinary rays,  respect ively.  

In t h i s  work no correction of t h e  observed refract ive 
ind ices  w a s  made, a s  t h e  main interest  w a s  comparison and 
not absolu te  values .  
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